354 research outputs found

    Innovative learning at The University of Edinburgh

    Get PDF
    The activities available to civil engineering students during the University of Edinburgh's innovative learning week in 2012 were examined. The academic staff proposed a wide range of possible activities and student participation was optional. Popular activities were those with a ‘hands-on’ element: making or doing something. The practical activities offered included designing and building trebuchets, relaying railway permanent way on a heritage railway, practical workshops on engineering in international development and learning to juggle. These activities suggested that heuristic learning by trial and error was likely to enhance the visualisation skills that contribute to good engineering design. Further, the linking of achievement to purposeful practice rather than innate talent could inform teaching methods in the future. They also showed that in some cases safety culture messages were still not fully assimilated by students

    Engineering Design of Localised Synergistic Production Systems

    Get PDF
    Centralised production of essential products and services based on fossil fuels and large scale distribution infrastructures have contributed to a plethora of issues such as deterioration of ecosystems, social-economic injustice and depletion of resources. The establishment of localised production systems can potentially reduce unsustainable resource consumption and bring socioeconomic and environmental benefits. The main objective of this work is to develop engineering tools for the rational design of such systems. Production of products and services is characterised as inter-linked subsystems (e.g. food, energy, water and waste). A sequential design approach is developed to design subsystems in turn, with necessary iterations. The process is illustrated through the co-design of energy, water and food production for a case study locale based on a developing eco-town in the UK. This design approach suggested an integrated system based primarily on locally available resources and allowed greater insight into the drivers and constraints on local resource use

    Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation

    Get PDF
    Background: There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. Objectives: We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. Methods: For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Results: Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Conclusions: Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs

    Soil carbon stock impacts following reversion of Miscanthus x giganteus and short rotation coppice willow commercial plantations into arable cropping

    Get PDF
    There are posited links between the establishment of perennial bioenergy, such as Short Rotation Coppice (SRC) willow and Miscanthus x giganteus, on low carbon soils and enhanced soil C sequestration. Sequestration provides additional climate mitigation, however, few studies have explored impacts on soil C stocks of bioenergy crop removal, thus the permanence of any sequestered C is unclear. This uncertainty has led some authors to question the handling of soil C stocks with carbon accounting e.g. through LCA. Here we provide additional data for this debate, reporting on the soil C impacts of the reversion (removal and return) to arable cropping of commercial SRC willow and Miscanthus across four sites in the UK, two for each bioenergy crop, with 8 reversions nested within these sites. Using a paired‐site approach, soil C stocks (0–1 m) were compared between 3 and 7 years after bioenergy crop removal. Impacts on soil C stocks varied, ranging from an increase of 70.16 ± 10.81 Mg C ha‐1 7 years after reversion of SRC willow to a decrease of 33.38 ± 5.33 Mg C ha‐1 3 years after reversion of Miscanthus compared to paired arable land. The implications for carbon accounting will depend on the method used to allocate this stock change between current and past land use. However, with, published life cycle assessment values for the lifetime C reduction provided by these crops ranging from 29.50 to 138.55 Mg C ha‐1, the magnitude of these changes in stock are significant. We discuss the potential underlying mechanisms driving variability in soil C stock change, including the age of bioenergy crop at removal, removal methods, and differences in the recalcitrant of the crop residues, and highlight the need to design management methods to limit negative outcomes

    The relationship between wind power, electricity demand and winter weather patterns in Great Britain

    Get PDF
    Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability

    Marketing Renewable Energy in the United Kingdom

    Get PDF
    This chapter focuses on the renewable energy market in the UK. First we discuss the impact of privatization, then show what preconditions might be important. The main conclusion drawn from the analysis is that in the UK, as well as in other countries, new policy frameworks need to guide the transition from an energy system designed to achieve short-term efficiencies through market operation to a long-term approach that would embrace new uncertainties. Both market interests and environmental protection need to be secured in order to guarantee the levels of investment needed in the UK’s renewable energy market
    • 

    corecore